Temporal variation in pools of amino acids, inorganic and microbial N in a temperate grassland soil

Classify & Cross-ref
BushfireTopic: 
Ecology and Biodiversity
Project Reference: 
TitleTemporal variation in pools of amino acids, inorganic and microbial N in a temperate grassland soil
Publication TypeJournal Article
Year of Publication2010
AuthorsWarren, CR, Taranto, MT
JournalSoil Biology and Biochemistry
Volume42
Issue2
Pagination353 - 359
Date Published2/2010
AbstractPlants can take up intact amino acids, even in competition with soil microbes, yet we lack detailed information on which amino acids dominate the soil and whether amino acid composition varies seasonally. This study tested the hypotheses that 1) the pool of amino acid N is generally larger than inorganic N; 2) temporal changes in the concentration of amino acid N is related to changes in the size of the microbial N pool; and 3) amino acid N is dominated by simple, neutral amino acids during warm months, whereas during cold months the amino acid N is dominated by more complex aromatic and basic amino acids. Approximately every month for two years we collected soil from a temperate, sub-alpine grassland in the Snowy Mountains of Australia. We quantified exchangeable pools of amino acids, nitrate and ammonium in 1 M KCl extracts. Microbial N was quantified by chloroform fumigation. Averaged across the 21 monthly samples, nitrate was 13% of the quantified pool of soluble non-protein N, ammonium was 34% and amino acid N was 53%. These data are consistent with our hypothesis that the pool of amino acid N is larger than inorganic N. There was substantial variation between months in concentrations of amino acids and inorganic N, but no clear temporal pattern. Microbial N did not vary between months, and thus changes in amino acid N were unrelated to microbial N. Principal components analysis indicated multivariate groupings of the different pools of N that were broadly indicative of function and/or biosynthetic relationships. Thus PCA identified a grouping of aromatic amino acids (Phe and Try) with amino acids derived from oxaloacetate (Asp, Ala, Val, Leu, Ile), and a second group comprising microbial N, nitrate and glycine. The pool of exchangeable amino acid N was dominated by Arg (26% of amino N) Val (20%) Gln (18%), Try (8%) and Asn (8%). Contrary to our hypothesis, the composition of the amino acid pool did not vary in a consistent way between months, and there was no evidence simple amino acids were relatively more abundant in warm months and complex amino acids in cool months.
DOI10.1016/j.soilbio.2009.11.017
Short TitleSoil Biology and Biochemistry
Refereed DesignationRefereed